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1 LTFs and Central Limit Theorems

1.1 Fourier coefficients of linear threshold functions

Recall the following definition.

Definition 1.1. A linear threshold function (LTF) is a function f : {±1}n → {±1}
of the form

f(x) = sgn(a0 + a1x1 + · · ·+ anxn), a0, . . . , an ∈ R.

Example 1.1.
MAJn(x) = sgn(x1 + · · ·+ xn).

Example 1.2. Dictator functions, OR, and AND are all LTFs.

Theorem 1.1 (Chow’s parameters). Let f : {±1}n → {±1} be a linear threshold function,
and let g : {±1}n → {±1} be any other function. If for every |S| ≤ 1, f̂(S) = ĝ(S), then
f = g.

Here is a geometric interpretation of LTFs: A LTF defines a half-space, and everything
on one side get the value +1, while everything on the other side gets −1. In fact, you can
perturb the hyperplane by a little bit, so we can assume without loss of generality that
a0 + a1x1 + · · ·+ anxn 6= 0 for all x ∈ {±1}n.
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Remark 1.1. This theorem tells us that there are at most (2n)n+1

Proof. Write f(x) = sgn(`(x)) with deg ` ≤ 1, `(x) =
∑
|S|≤1

̂̀(S)
∏
i∈S xi, and `(x) 6= 0

for all x ∈ {±1}n. By Plancherel’s theorem,

〈f, `〉 =
∑
|S|≤1

f̂(s)̂̀(s).
On the other hand,

〈f, `〉 = E[f(X)`(X)]

= E[|`(X)|]
≥ E[g(X)`(X)]

=
∑
|S|≤1

ĝ(S)̂̀(S).

Since f̂(S) = ĝ(S) for all |S| ≤ 1, this inequality must have been an equality. So we must
have g(x) = sgn(`(x)) for all x.

Definition 1.2. A degree d polynomial threshold function (LTF) is a function
f : {±1}n → {±1} of the form

f(x) = sgn(p), p ∈ R[x1, . . . , xn].

Remark 1.2. You can show that if f is a degree d PTF and f̂(S) = ĝ(S) for all |S| ≤ d,
then f = g.

Theorem 1.2 (Gotsman-Linial). Let f(x) = sgn(`(x)) be a LTF. Then W≤1(f) ≥ 1/2.

Proof.

‖`‖1 = EX [|`(X)|]
= EX [`(X)f(X)]

= 〈`, f〉

=
∑
|S|≤1

̂̀(S)f̂(S)

Let f≤1(x) =
∑
|S|≤1 f̂(S)χS(x) be the truncated version of f .

= 〈`, f≤1〉
Using Cauchy-Schwarz,

=
√
E[`(X)2]

√
E[f≤1(X)2]
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= ‖`‖2
√∑
|S|≤1

f̂(S)2.

Rearranging, we get

W≤1(f) ≥ ‖`‖
2
1

‖`2‖2
By the KK inequality for linear functions,

≥ 1

2
.

Example 1.3.
W≤1(χi) = 1.

Example 1.4.

W≤1(MAJ) =

n∑
i=1

f̂({i})2 ≈
n∑
i=1

(√
2

π

1√
n

)2

=
2

π

1.2 The central limit theorem and influence of the majority function

Recall the Central Limit Theorem from probability theory.

Theorem 1.3. Let X1, . . . , Xn be iid with mean µ and variance σ2. Then

X1 + · · ·+Xn − nµ√
n

d−→ N(0, σ2).

First, let’s use this to analyze the influence of the majority function.

Proposition 1.1.

I(MAJn) =
∑
i

Inf(MAJn) ≈
√

2

π

√
n.

Proof.

I(MAJn) =
∑
i

Inf(MAJn)

Since the majority function is monotone,

=

n∑
i=1

MAJn({i})

=
n∑
i=1

EX∼Un [MAJn(X)Xi]

3



= EX

[
MAJn(X)

n∑
i=1

Xi

]
The majority function is the sign of this sum.

= EX

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
]

=
√
nEX

[∣∣∣∣∑n
i=1Xi√
n

∣∣∣∣]
≈
√
nEZ∼N(0,1)[|Z|]

Z is a continuous random variable with probability density function 1√
2π
e−x

2/2.

=
√
n

∫ ∞
−∞

1√
2π
e−z

2/2|z| dz

= 2
√
n

∫ ∞
0

1√
2π
e−z

2/2z dz

=
2√
2π

(−e−z2/2)
∣∣∣∞
0

=
√
n

2√
2π

=
√
n

√
2

π
.

How precise is this approximation? The following theorem gives us an answer.

Theorem 1.4 (Berry-Esseen). Let X1, . . . , Xn be independent random variables with E[Xi] =
0 and Var(Xi) = σ2i . Assume that

∑n
i=1 σ

2
i = 1. Let S = X1 + · · ·+Xn, so that E[S] = 0

and Var(S) = 1. Then for every u ∈ R,

|P(S ≤ u)− PZ∼N(0,1)(Z ≤ u)| ≤ const ·β, β =

n∑
i=1

E[|Xi|3].

To apply this to LTFs, letXi = aixi, where xi ∈ {±1}. Then Var(Xi) = E[(aixi)
2] = a2i ,

so we want
∑n

i=1 a
2
i = 1. Then

∑n
i=1 aixi ≈ N(0, 1) with error

β =

n∑
i=1

E[|Xi|3] =

n∑
i=1

|ai|3 ≤ (max
i
|ai|)

n∑
i=1

a2i︸ ︷︷ ︸
=1

= max
i

(|ai|).

The majority function is the case of a1 = a2 = · · · = an = 1/
√
n.
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We can think of the Berry-Esseen theorem more generally than just in terms of cumu-
lative distribution functions. The condition

P(S ≤ u) ≈ P(Z ≤ u)

is the same as saying E[ψu(S)] ≈ E[ψu(Z)] for the test function ψu:

The test function that we actually care about is the absolute value function. We can try
to approximate this by step functions near 0 (and use a Chernoff bound away from 0).

1.3 Stability of the majority function

Theorem 1.5. For all ρ ∈ [−1, 1],

Stabρ(MAJn)
n→∞−−−→ 2

π
arcsin ρ.
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Proof. Recall that a ρ-correlated pair of inputs is given by independent (Xi, Yi) with
E[Xi] = E[Yi] = 0 with E[XiYi] = ρ.

Stabρ(MAJn = E(X,Y ) ρ-corr.[MAJn(X) MAJn(Y )]

= E(X,Y ) ρ-corr.

[
sgn

(
X1 + · · ·+Xn√

n

)
sgn

(
Y1 + · · ·+ Yn√

n

)]
What is the correlation of the Gaussians that approximate these sums? Let

S[i] =

[
1√
n
Xi

1√
n
Yi

]
∈ R2, S =

[
1√
n

∑n
i=1Xi

1√
n

∑n
i=1 Yi

]
.

The CLT over R2 tells us that S is approximately a multivariate Gaussian Z =

[
Zi
Z2

]
,

which is determined only by its mean and covariance matrix. The mean is

E[S] =

n∑
i=1

E[S[i]] =

[
0
0

]
,

and the covariances are

E[SXSY ] = E

[(
1√
n

n∑
i=1

Xi

)(
1√
n

n∑
i=1

Yi

)]

=
1

n

n∑
i=1

E[XiYi]

= ρ.
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Similarly, we see that E[S2
X ] = 1 and E[S2

Y ] = 1. So we get the covariance matrix[
1 ρ
ρ 1

]
.

So we get that

Stabρ(MAJn) ≈ E
Z=

[
Z1
Z2

][sgn(Z1) sgn(Z2)]

=
2

π
arcsin ρ.

The last equality is given by Sheppard’s Lemma, which we will see next time. Later,
we will prove the following result.

Theorem 1.6 (“Majority is stablest”). Fix 0 < ρ < 1, and let f : {±1}n → {±1} with
E[f ] = 0 and Infi(f) ≤ ε. Then

Stabρ(f) ≤ Stabρ(MAJn) + oε→0(1).

Remark 1.3. The reason we need a condition on the influence of each voter is because
dictators function are the most stable, in general.

Next time, we will also see Peres’ theorem about sensitivity of linear threshold functions.

Theorem 1.7 (Peres). For every LTF f , NSδ(f) ≤ O(
√
δ).
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